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Abstract - .

IThis article concerns the effects of non-Fickian water diffusion in fiber-

reinforced polymeric composites. The departure from classical diffusion

is attributed to the time-dependent response of the polymer, akin to vis-

coelastic mechanical response.

I A formulation is provided to evaluate the coefficient of moisture diffu-

sion and moisture profiles within the composite for the non-Fickian case.

I In addition, it is demonstrated that computed magnitudes of residual

hygro-thermal stresses may differ by about 25% from predictions based

I upon classical diffusion.

I 1. Introduction

I The diffusion of water in polymers and fiber-reinforced polymeric

composites has been studied extensively for almost a century and a

vast body of literature deals with that subject. A survey, primarily

concerned with fiber-reinforced polymeric composites, was published

recently (Weitsman, 1991).
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The most prominent and common formulation: of the diffusion

process employs the well known Fick's law (Fick, 1855), whose one
dimensional version reads

OC _ 2 Ca> = D- , t>o, -L<z<L. (1)

The field equation (1) is accompanied by initial and boundary
conditions

a C(z,O) = Ci(z), -L < z <L, (2)
and, say

C(±L,t) = CL(t), t > 0. (3)

In equations (1), (2) and (3), z and t are spatial coordinate and
time, respectively, C = C(z, t) is moisture content and D denotes the
coefficient of moisture diffusion. In many cases the coefficient D is
assumed constant, whereby the diffusion process is linear. The above
assumption will be employed in the present work.

Consider, in addition, the special circumstance of an initially dry
plate subjected to constant boundary conditions, namely,

I C(z,O)=o, -L<z<L, (2a)

I C(±L,t) = CoH(t), t > 0. (3a)

where, H(t) is the Heaviside step function.
Denote the solution to the unit step input (i.e., Co = 1 in equation

(3a)) by CH(Z, t). The well known result, given in Crank (1975), reads:

I= +1 + +-/ (2n +1+ z/L(4

Integration across the thickness provides the weight gain MH(t), which
corresponds to CH(Z, t),

MH(t) = 4Lv/1". 1 +2 00 ierfc (n , (5)
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I

where
SDt6)

erfc(z) is the complementary error function and ierfc(x) is its integral:

I ierfc(x) = jo erfc (ý). (7)

I In view of linearity, the solution for CO 0 1, as well as for

C(±L, t) = g(t), can be expressed by means of CH(z, t) and MH(t) in
I a straightforward manner (Crank, 1975).

Since data on moisture distribution are scarce and difficult to gen-

erate, the most readily available experimental information accounts

for total weight gain. Before comparing weight gain data with model

predictions, note the characteristic features of MH(t*) when plotted

Svs. x;O , as shown in Figure 1. Accordingly, the value of the initial

I slope is 4L/#, departures from linearity by ±1% do not occur until

v- ; 0.557, MH(t*) ; 0.62, and saturation, to within ±1%, occurs

I at V'I = 1.32. It should be recognized that typical weight gain data
exhibit scatter of at least ±1%.

In addition, it is possible to infer the value of the diffusion coeffi-
cient D from MH(t) (Shen and Springer, 1981), we have

ID = 11 [MH(t) 2  (8)

i- 6t-'+O t
In this manner, knowledge of MH(t) enables the evaluation of

C(z, t), through retracing expression (4) from equation (5), and the
computation of residual hygral stresses by means of well established

I analyses (Tsai and Hahn, 1980, Harper and Weitsman 1985, Weits-

man, 1991).

I Several uncertainties arise when moisture weight gain data do

not correspond to the strictures exhibited in Figure 1, implying that

I the premises which led to MH(t) are not met by the polymeric com-
posite material at hand. Such circumstances occur very frequently,
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I with a typical example exhibited in Figure 2 for the case of Fiberite

T300/1014 composite (Blikstad, et al, 1988). To accentuate the de-

partures from "classical" predictions, which corresponds to equation

(5), the data in Figure 2 are bracketed by two curves which conform

to the format of Figure 1 (multiplied by two distinct constants Co to

provide best fits with data at short and long times, respectively). For

future reference, these curves are denoted by "Upper Fickian" and

"Lower Fickian", respectively.

There are several plausible explanations for the causes for depar-

i ture from a linear diffusion process (Weitsman, 1991). Of these, one

rationale is motivated by considerations akin to the well known time

I dependent, viscoelastic response of polymers. Accordingly, the very

same Gibbs free energy which gives rise to time-dependent mechani-

i cal response, predicts a diffusion process with time-dependent bound-

ary conditions even under exposure to constant ambient environment

I (Weitsman, 1990).
This consideration will be employed in the present work, namely,

we shall retain the field equation (1) and initial condition(2a) but will
consider the boundary condition

SC(±L, t) =f(t) (9)

i instead of (3a), even though the ambient condition remains constant.

The following issues will be addressed in the present work:

(a) Express the moisture distribution, C(z, t), when moisture up-

take M(t) does not conform to expression (5).

(b) Establish a method to determine the value of the coefficient

of moisture diffusion, D, when expression (5) - and thereby also

I equation (8) - no longer hold.

(c) Evaluate the effects of foregoing distribution C(z, t) on residual

i stresses in composite laminates.

i4



2. Diffusion with Boundary Conditions

of Viscoelastic Type

It has been suggested (e.g., Long and Richman, 1960) that depar-
ture from "classical" diffusion may be explained by replacing bound-
ary condition (3a) with

C(±L, t) = [CG + C, (l - e-,)] H(t). (10a)

More recently, it has been shown (Weitsman, 1990) that for vis-
coelastic materials, both creep compliance S(t) and chemical potential
p(t) are expressible in Prony series forms, namely,

N
*(t) = o + E o (i - ).

n=1

This observation suggests that, in view of the time-dependent re-
sponse of the polymer, one should consider the boundary condition

C(±L, t) = Co + E Cn (1 - et, H (t) (lob)
n=1

I of which (10a) accounts for the first term in the series. The above
expression implies that equilibrium between the moisture content just

I inside the material and the chemical potential of the external vapor
is established over an extended time - rather than instantaneously.

j The solution to equation (1), with initial condition (2a) and
boundary condition

C(+L, t) = (l - e-•) H(t)

Sis well known (Crank, 1975). For future reference, it will be denoted
by (z, t;fl). We have

6(z,t; P) = 1-exp(-Pt) cos z vSD

I - 163L2 " I (-l)nexp{-[(2n+l)ir/2] 2t"} (2n + 1)7rz( 1 ,

- - O (2n + 1)[4flL 2 - DTr(2n + 1)21 2L

1 51" n=



Upon integration across the thickness, the total weight gain corre-
sponding to C(z, t;,3) is

FD /3L 2

I M(t; 0) = 2L.{ 1 -exp(-13t) tan -

8 00 exp{-[(2n + 1)7r/2]2t*} (12)
W I (2n + 1)2{1 - (2n + 1)2[D7r2/(4#L 2 )]}

Consequently, the distribution and total weight gain due to
boundary condition (10b) are

N

c(z,t) = COCH(z,t) + E C.C(z,t; fl), (13)

and

M(t) = CoMH(t) + _ Cni(t; fin). (14)

The latter expression should be correlated with experimental

data.

3. Data Fitting

Since data contain experimental error and statistical scatter, it is
advisable to smoothen the weight gain data, Mexp(t), before affecting

a match with expression (14).
Noting that for early times MH(t) is proportional to v/t, we choose

to fit the experimental data as follows,

J
Mfit(t) = At"/2 . (15)I j=1

The coefficients Aj are determined by minimizing the square error,
namely,

"� [oMe�XP(t)-,. Ajta/] dt = 0, (i = 1,2,... ,J) (16)
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In equation (16), tmax denotes the duration of the moisture uptake

experiment.

U With Aj determined through expression (16) it is now necessary

to express Mfit in the form (14). This task is accomplished in two

I steps.
Consider first the step-wise increasing boundary condition

I K
C(±L, t) = CoH(t) + E C'H(t - tk),

Ik=1

to which corresponds the total weight gain

K

M(t) = COMH(t) + E CfMH(t - tk)H(t - tk). (17)
3 k=1

The quantities Co, CkH and tk (k = 1,2, .-. ,K) in equation (17)
- can be selected in a manner which yields M(t) - Mfit(t) < 6cr at all

times t, with 6cr a prescribed tolerance. It is advisable to select bcr to

be smaller than a typical discrepancy between Mexp(t) and Mfit(t).
The proposed procedure is to select Co in equation (17) which, in

view of equation (5), would yield M(t) = Mfit at the first time step,

£ c = Mfit(LAt) .Dz- t4 Vo iýAt'

where At is the selected time step.
Then, retain M(t) = CoMH(t) until such time t = il when

M'fit(Il) - CoMH(t1) = 6 - 6cr. In view of equation (5), this dis-
crepancy at t = t1 is overcome by introducing a step increment in the
boundary condition at some earlier time t1 of magnitude

1 r

I The combined effect of CoMH (t) + CjH MH (t - ti) is now compared
with Mexp(t) until such time i 2 when they differ by 6cr, at which stage

* another incremental step is added to the boundary condition at an

1 7Isepa



earlier time t 2 of magnitude C2H analogous to CH. The procedure is
repeated until the entire range of Mexp(t) is covered. The amplitudes
of the incremental steps are given by

4 D(4• (18)
Ck" 4 D(k -- tk)"

In our computations, we found it is expedient to select tk to co-

incide with tk-1 (with tj = 0).
With known CkH and tk (k = 1, 2,... ,K), it is possible to convert

the step-wise incrementing boundary condition

K
C(±L,t) = L Ck'H(t - tk). (19)

Ak=1

to the continuous Prony series form
N

C(=L, t) Cnc (1- e-t). (20)
n=1

- Employing a least square fit, we have

CJH(t - tk)- Z C. (i - dt = 0. (21)- Ci k=1 n=1

-_ Equation (21) results in an N x N system of linear algebraic
equations in C=I a,3 C, = b, (22)

whereS1 - e-•t1 - 1 - e-'t' 1 - e(+3t'I aij = -tmax e-Oi a + e9i+Sj (23)

3b, --- Ck (tmax -tk) + -(e-atm *z e-i")] (24)

k=l

I It should be noted that the above procedure provides some lati-
tude in the selection of tk (k = 1,2,..., K) and /j (j = 1, 2,..., N).

3 Although no hard and fast rule seems to be available, it is advisable
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to select /3j which cover the spectrum of experimental time, preferably

two - but at least one - values of 3 per time decade.
It may appear that the employment of the intermediate series

(19) is redundant and that the values of C, in equation (20) can be
obtained directly through a least square fit of

oC qoM(t) - l;)j dt = 0, (25)

3 which yields an N x N system of linear algebraic equations

S= b1  (26)

I to determine Cj.
In this circumstance we have

aij = JO A(t; P3)1'v(t; Pj)dt, (27)

f =jma [[Mfit(t) - CoMH(t)] M(t; P,)dt. (28)

Unfortunately, the numerical evaluation of ,ij and bi involves com-

pounded effects of truncation errors and, most critically, yields an ill-

conditioned matrix &ij. The latter difficulty arises from the fact that

rows and columns in the aij matrix consist of elements of very close

magnitudes.
In many circumstances moisture uptake data do not seem to ap-

proach an equilibrium value, regardless of the duration of exposure,
and M(t) tends to increase according to M(t) ,-, KtP as t >> 1. It
can be shown that this circumstance is commensurate with a time
dependent boundary condition

C(±L,t) = Cot'H(t). (29)

To prove this, let C(z, s) denote the Laplace transform of C(z, t),
then, since

3 ý(-L, s) = COr(p+ 1)

1 9

I



it can be shown that

-(z,s) = Cor(p+ 1) coshqz (30)-- sP+1  cosh qL

where q = Vl-s]D.
Consequently, the Laplace transform, M(s), of the total weight

I gain M(t) is g(s) = 2c 0r(p + 1) tanhqL 
(31)sp+l q

Although it seems impossible to express M(t) analytically', its
asymptotic value for t >> 1 is readily obtainable from

limM(s) = 2LCor(p+ 1)
3'•0 SP+1

which yields
lim M(t) = 2LCoft. (32)

4. Evaluation of the Coefficient of Moisture Diffusion

In all previous computations, it was implicitly assumed that the
value of the coefficient of moisture diffusion D is known. However,

1An exception occurs for the important circumstance p = 1/2, which corresponds

to M(t) - Av,/ as t --* o. In this case both C(z,t) and M(t) have the following

analytical expressions (see Appendix)

C~~t =c ~ 8[ +o 2 ~(_l~n7; ((2n + 1)7r v-) cs(2 n +1)rz]
C(z, t) = covt- 1 + r2-V rt -, n' E F (2n.

I 7 .=o+ ()n (o( 2 2L

M(t) = 2LCoV1 - 16• 00 1 F + 1)r
n=0

where F(ý) denotes Dawson's integral (Olver, 1974) defined by

=-- e 2 du.

10



when experimental weight gain data do not fit the format shown in

Figure 1, expression (8) does not apply and D is unknown.
Assume as before that departure from classical diffusion are at-

tributable strictly to the time-dependence of the boundary condition,
namely,

C(=L, t) = Co[l + f(t)]H(t) (33)I with f(0) = 0.

i Therefore,
SM(t) = Co MH(t) + MH(t - r) df() (34)

Let §(s) denote the Carson transform of g(t), namely,

X(S) = S j es tg(t)dt,

then

whenceM(S) = CO [IH(S) + MH(S)f(S)],

whence
=1 M•(s)

I M(S)(35)](s = o MH(s) -1.(5

Note that at this stage, Co, f(t) (whereby also ](s)) as well as D

I are unknown. However, MýIH(s) is known analytically (Crank, 1975),
namely,

I MH(S) = 2V Etanh -L. (36)

In addition, M(s), which is the Carson transform of the weight
gain data, can be computed numerically.

By hypothesis, f(t) is independent of the sample thickness L.
Therefore, consider two sets of weight gain data M(t; L1) and M(t; L2)
associated with thicknesses L1 and L2 , respectively. Equation (35)
yields

M(s; LI; D) MH(s; LI)

Mý1(s; L 2; D) MH(s;L 2) (37)

111!1



Note that equation (37) contains the unknown D alone and does

not include f(s) and Co.
Consider a data fit according to equation (15), whose Carson

transform 
is given by

() =1: 7,/ r( + 1). (38)

Consequently, it is possible to compute the ratio

Pk = P(Sk) = M(sk; L1 ; D)

=p k (sk;L 2;D)

at distinct values of transform parameter s = sk (k = 1, 2,... , K) and
I express the ratio

tanh V/kL2/
rk(D) = r(sk,D) =

tanh /Sk LI/D

I which corresponds to the right hand side of equation (37).
The value of D can be determined from the best least square fit

obtained from
S [Pk _- rk(D)]2 = 0, (39)

Snamely,
K

_[Pk - rk(D)]rk(D) = 0, (40)I k=1

where,

I ~rk(D) = (k/ID) -

I _Llcsch2(LljV/s-D)tanh(LjV/Sk)1.

I Denote

j gk(D) 2 ~D) r/ (D)

I 12
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-- L2cth(Llv[k/D)sech2(L 2 Vs7/D) -

-Llcsch (Li Vfs7D) tanh(Li /f7I), (41)

then, since D 34 0, eqn.(40) is equivalent to

K

,[pk - rk(D)]gk(D) = 0. (42)
k=1

This equation can be solved numerically for D. In the sequel,

Newton's Iteration Method will be employed.
Newton's Iteration Method starts with a suitably chosen initial

value D(°) and employs iteration until attaining convergence within a
prescribed tolerance. In the present case, the nth iterative value, D(),

is related to the (n - 1)st value as follows:

KE-[Pk - rk(D("-1) )lgk(D(n-1))

D -() = D(n-1) _ k=1 (43)

ok - ,k(D)Igk(D

The denominator in equation (43) can be expressed as

pk - rk(D){gk(D [Pk - rk(D)g'k(D) + (D

where

1 g~9(D) =(v 7 ){cth(Ljv/k1D)tanh(L 2VF/k13)
sinh2(LiV1 7-D)

L2v/ '1D - LL 2 }
coh (~vskD) -sinh 2(LVf7k1)cs h2 (L2VIkI

5. Moisture Effects on Residual Stresses

To demonstrate the significance of non-Fickian diffusion on resid-
ual stresses in composite materials, consider the case of a [0/ 9 0']s

13



symmetric lay-up. The basic stress-strain relation for the cross-ply

laminate are (Harper and Weitsman, 1985):
For the 00 layers,

a (z,t) = QL[e°(t) + zK=(t) - aLAT - fJLCe(z, t)]

+QLTK'(t) + ZtCK(t) - aTAT - PTC.(z, t)], (44)

I o•(z, t) QLT[EO(t) + zK.(t) -LAT- /ILC,(z, t)]

+QT[C°(t) + zKv(t) - aTAT - #TC,(z,t)], (45)

where subscripts L and T denote the the directions along and per-

pendicular to the fibers respectively, x and y denote the length and
width directions of the laminate respectively, a's are the thermal ex-

pansion coefficients and p3's the moisture swollen coefficient, AT is the
temperature variation, Ce(z, t) the effective moisture concentration.

For the 90° layers, the stresses can be obtained by interchanging

subscripts L and T.
In the above equations, E0 and n are determined in terms of the

external applied loads. In the absence of such loads we have

N.(t) = L au(z, t)dz = 0, (46)
-L

NV(t) = La,(z,t)dz = 0, (47)
L

M.(t) = L La(z,t)zdz = 0, (48)
L

MY(t) = La,(z,t)zdz = 0. (49)

Substitution of the appropriate stress expressions into eqns.(46)-(49)
yields, after some manipulations, the following results:

h

C°(t) = h {(QL + QT)[hPAT(t) + RG(t) + SF(t)]I -QLTL[hPAT(t) + RF(t) + SG(t)]}, (50)

, -t) = {QL + QTO)hPAT(t) + RF(t) + SG(t)]
- QLTL[hPAT(t) + RG(t) + SF(t)]}, (51)

1 14I



I

n,(U) = K(t)= 0, (52)

* where

A= h(QL + QT)(QL + QT) - (QLTL) 2 , F(t) = j'Ce(z,t)dz,

G(t) = - C(Z, t)dz, P = QLtL + QLT&T + QLTcL + QTrT,

SR=QL#L + QLTflT, S -- QLTIL + QT/T, Cý(z,=) - C(z,t) - Cth,

Cth denotes the threshold moisture concentration below which no
swelling effect is observed and h is the common thicknesses of 900
and 0' laminae group, while - as before - 2L is the total thickness

of the laminate.

6. Computational Results

The moisture weight gain data of Figure 2 were fitted by foregoing
numerical scheme with a smooth curve Mfit(t) according to equation
(15) and subsequently with M(t) according to equation (14) and (5).

Those computations yielded a six-term fit with A1 = 0.23281,
A 2 = 0.010999, A3 = -7.2414 x 10-3, A4 = 1.5040 x 10-4, A 5 =

-1.3487 x 10-6, A6 = 4.4508 x 10-' for Mfit and the resulting curve
is shown by the solid line in Figure 4. The smooth curve of Mfit was
subsequently represented by M(t) of equation (14) with 6 = 0.01M•.
This representation is shown in Figure 4.

Afterward, the data were represented by M(t) as expressed by
equation (5) with Co = 0.7 and N = 7, C 1 = 0.098605, C2 = 0.021929,

C3 = -0.083097, C4 = 0.27450, C5 = -0.55194, C6 = 1.7834, C7 =

-1.5819 and 31 = 1/10, /2 = 1/50, 33 = 1/100, 34 = 1/500, 35 =

1/1000, 36 = 1/5000, /7 = 1/10000 (/3 in hours-').

In all above computation, we took D = 3.2 x 10-4 mm 2/hour.I The resulting curves for M(t) are indistinguishable from Mfit(t)

and coincide with the solid line shown in Figure 2.

I 15
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I
For purpose of comparison, the data of Figure 2 were bracketed

I by two curves of the form CoMH(t). The value of Co = 1.12 x 10-2,
with D = 3.2 x 10-4 mm2/hour, provide a "Lower Fickian Fit", while

I Co = 1.32 x 10-2, with D = 1.7 x 10-4 mm 2/hour, gave an "Upper

Fickian Fit" to the data. These curves are shown by dashed lines in

I Figure 2.
Employing the aforementioned values of Ci and P3i (i = 1, 2,.. -, 8)

I and Co = 0.7 x 10-2, the distributions C(z, t) were computed at times
t = 500,3600 and 8000 hours. Results are shown in Figures 5 through

I 7, where moisture profiles associated with both "Upper" and "Lower"

Fickian data fits are shown for comparison.

Residual hygro-thermal stresses were evaluated according to equa-
tions (44) and (45). The computations employed the manufacturer's5 data (ICI data sheet) which gave h = 0.127mm, EL = 148 GPa

and ET = 11GPa. In the absence of further details, we assumed a

Poisson ratio VLT = 0.28. The above quantities were converted to

the stiffness utilized in equations (44) and (45) as follows (Tsai and
Hahn, 1980): VTL = LTET, QL EL _ L QT FT

lLE~ L = 1 LT VTL LV'

QLT = VLTET

"T 1 VLTVTL

Furthermore, we assumed hygrothermal properties similar to
those of AS4/3502 (Harper and Weitsman, 1985). We thus took

L = 0, O3 T = 3.24 x 10-3/1% moisture weight gain, Cth = 0.1%,
AT = -180°C, aL = -0.02 x 10- 6 /°C, aT = 27.5 x 10-6 /°C.

Results of the hygro-thermal residual stresses are shown in Figures
8-13.

It can be noted from the above results that, at early stages, al-

though all the predicted moisture distributions correspond to the same
total moisture weight gain, they yield distinct stress distributions. At

I later stages, as the moisture distribution tends be uniform, the pre-

I 16
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dicted residual stresses are basically proportional to the predicted to-

tal moisture weight gain. At some locations, the Fickian predictions

may differ by as much as 20-30% from the non-Fickian values.

Furthermore, at the early stages, the stresses are closer to the

lower Fickian fit since the boundary moisture saturation level is closer

to the lower bound, while at later stages, as the moisture saturation

level increases, the stresses are closer to those which correspond to

the upper bound. In any case, it is worth noting that the lower and

upper Fickian fits on the moisture distribution give lower and upper

bounds of the resulting hygro-thermal stress predictions.

* 7. Conclusions

In principle, the diffusion process of water in polymers and poly-

meric composites may depart from the idealizations inherent in the

classical formulation of Fick. Although there are abundant reasons for

that departure, the current work focused on correlating non-Fickian

weight gain data with a time-dependent boundary condition, as mo-

tivated by the viscoelastic response of polymers.

I It is shown that non-Fickian aspects of the moisture absorption

process have significant effects on the resulting hygro-thermal stresses

in composite materials. The current work reveals the sensitivity of the

residual hygro-thermal stresses to a boundary condition of a viscoelas-

I tic type, exhibiting discrepancies of about 20-30%.

For a diffusion process whose lower and upper Fickian fits can be

I/ found, is it safe to say that the residual stresses which correspond to

those two cases provide bounds for the non-Fickian case, resulting in

good engineering estimates for the residual stresses in laminates.

However, for an accurate assessment, non-Fickian analysis is

needed and the formulations presented in this work provide a sys-

tematic method to treat this case.

1 17
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I Appendix:

I The Analytical Solution to the Diffusion Problems with

Boundary Condition C(±L, t) = CoiVH(t)I
Employing the notation of section 3, the transformed governing

equation for the diffusion problem is:

d 2- (A.1)
dz 2 D2cj

I The solutions in the transformed space are

_ cosh qz (A.2)
"2=VrSi3coshqL'

M(s) = WD S2 (A.3)

For simplicity in future use, we denote, in eqn.(A.2),

V = cosh qz (A.4)
s cosh qL

Generally, if ti(s) can be expressed as

V(s) = A(S) (A.5)

I where f(s) and g(s) are polynomials of s, and if the degree of g(s) is
higher than that of f(s), then y(s) can be further expressed as

N f(a") (A.6)
n=l g1(a,,) s- a,,'

I where, a, are zero points of g(s) and N is the degree of g(s).

In the present case, f(s) = coshqz, and g(s) = scoshqL.
Since

coshz= 1+ 4z2) 1+34zr2 4Z2 (A.7)
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I

and g(s) is indeed one degree higher than that of f(s). Furthermore,
an can be solved from the equation

s cosh qL = 0 (A.8)

U to give
a a0o = 0, (A.9)I and

qnL = +(2n + 1)7i, (A.10)2i hence

_D(2n + 1)2 ,r2h an 4L2  ' (n =0,1, 2, --). (A.11)

Thus V(s) can be rewritten as:

O C- Ci f(0) 1 +_ f(an) 1 ]
2 Ig'(0) ;3/ g'O (an) Vi~s

Although each value of an corresponds to two values (+ or -) of
qn in equation (A.10), the choice of any specific sign is immaterial,

I since either one would yield the same results for the present problem.
Selecting the positive sign we obtain

i (s) = coshqz,

1 1(0) = cosh0= 1, (A.14)

f(an) = Cos (2n+1)7rz (A.15)II ~2L'

g'(s) = coshqL + 1qLsinhqL, (A.16)

g'(0) = cosh0= 1, (A.17)

g'(a,.) - (2n + 1)r(_1)n+l. (A.18)
4

I In inverting C(s) as expressed in eqn.(A.12), we note that the
inverse ofI 7(s) 1 /(s-a (A.19)il - VrS(S - a,)

is
f(t) = e- erf(Va). (A.20)

£ 20
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I

"On the other hand, the so called Dawson's integral has an alternative
3 expression (Olver, 1974)

3 F(ý) = -- e- erf(Ci) = e- 2  e du. (A.21)

Comparing (A.20) with (A.21), then substituting the above result into
I eqn.(A.12)we obtain:

C(z,t) = Cov 1 + E Fr2V*o(2n)+)2 ((2 cos (2n 1)rz]

(A.22)

The total moisture weight gain can be readily computed from the
integration of the above expression to yield

I -- M(t)= 2LCovrt 1 •r---600 1 (2n + 1) 7r f . (A.23)
7r n=O (n+2

II

I
i
a

I

I
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